sábado, 25 de março de 2023

Hercóbulus

Ciência e Misticismo

A crença na existência de um corpo celeste denominado Hercóbulus (ou Hercólubus) é comum em certos meios esotéricos e pseudocientíficos. Contudo, não há qualquer evidência astronômica que comprove sua existência ou aproximação da Terra.

Em 1984, astrônomos dos Estados Unidos propuseram uma hipótese para explicar extinções em massa aparentemente periódicas nos registros fósseis, com ciclos de cerca de 26 a 30 milhões de anos. A explicação envolvia a existência de uma estrela anã vermelha ou marrom, denominada Nêmesis, orbitando o Sol em uma órbita altamente excêntrica, com semieixo maior de aproximadamente 90.000 unidades astronômicas (U.A., 1,4 anos-luz). Ao atingir o periélio, essa estrela atravessaria a Nuvem de Oort, perturbando gravitacionalmente cometas e lançando alguns para o interior do Sistema Solar, aumentando a chance de colisões com a Terra.

Essa hipótese jamais foi confirmada. O satélite IRAS fez uma varredura do céu em infravermelho, onde um objeto frio como Nêmesis seria mais facilmente detectável, mas não encontrou candidatos compatíveis. Ainda assim, a ideia foi distorcida por autores esotéricos, que transformaram a estrela em um planeta ou cometa ameaçador e sugeriram que sua existência é ocultada por astrônomos.

Um exemplo real de anã vermelha próxima é DENIS-P J104814.7−395606.1, descoberta na pesquisa infravermelha DENIS, no Chile. Com mais de 60 massas de Júpiter, ela está a 13 anos-luz da Terra. Sua detecção reforça que, se existisse um corpo como Nêmesis a 1,4 anos-luz, ele já teria sido facilmente identificado. Portanto, a ausência de tal detecção é uma forte evidência contra sua existência.

Não há registros na literatura científica que sustentem a existência do chamado Hercóbulus. A hipótese carece de fundamentos observacionais e viola princípios fundamentais da astrofísica, como detecção por paralaxe, brilho aparente e coerência orbital. Trata-se de um conceito místico, e não científico.

Nota: O catálogo Gaia fornece dados precisos sobre bilhões de estrelas, permitindo excluir a presença de objetos massivos não detectados até centenas de U.A., com base em suas perturbações no movimento estelar.


Nuvem de Oort e o Cinturão de Kuiper

Nuvem de Oort-Öpik e órbitas elípticas, parabólicas e hiperbólicas de alguns hipotéticos cometas. Fonte: Bergamini, D.:1970 In, O Universo, Biblioteca da Natureza Life, Livraria José Olympio Editora, Rio de Janeiro, P.69

Durante as primeiras décadas do século XX, diversos pesquisadores investigaram as perturbações gravitacionais planetárias sobre as órbitas de corpos do Sistema Solar, como asteroides e cometas. Esses estudos levaram ao desenvolvimento das primeiras ideias sobre a distribuição estatística dos parâmetros orbitais desses corpos.

Strömgrem (1914, 1947) demonstrou que as órbitas hiperbólicas dos cometas (1/aorig < 0, onde  aorig é o semi-eixo maior da órbita do objeto antes de entrar na região planetária do Sistema Solar) não eram as originais quando esses corpos entraram no Sistema Solar, mas o resultado da interação gravitacional com os planetas.

Sinding (1948) determinou valores de 1/aorig<01/a_{\text{orig}} < 0 para vinte e um cometas de longo período. Esses resultados, juntamente com o trabalho de Van Woerkom (1948), formaram a base para o trabalho de Oort (1950) sobre a existência de um reservatório de cometas além dos limites do Sistema Solar. A teoria de uma hipotética nuvem de cometas distantes, com trajetórias estáveis frente a perturbações estelares, foi formulada por Öpik em 1932, antes de Oort.

Oort deduziu a existência desta nuvem com base no grande número de cometas de longo período com 1/aorig<104U.A.11/a_{\text{orig}} < 10^{-4} \, \text{U.A.}^{-1} dentro de uma amostra de dezenove cometas. Seus afélios estariam a pelo menos 200.000 U.A. do Sol. Oort concluiu que haveriam órbitas estáveis a aproximadamente 200.000 U.A., as quais poderiam ser perturbadas por passagens estelares próximas. Admitindo que as passagens estelares poderiam tornar randômica a distribuição orbital da nuvem e considerando a idade do sistema solar, a nuvem poderia conter cerca de 2×10112 \times 10^{11} cometas. Com uma massa cometária média da ordem de 1013kg10^{13} \, \text{kg}, a massa total da nuvem seria de aproximadamente 0,3 massas terrestres ou 2×1024kg2 \times 10^{24} \, \text{kg}.

De acordo com a teoria da difusão orbital de Van Woerkom (1948) para as perturbações planetárias, o número de cometas com 1/aorig<104U.A.11/a_{\text{orig}} < 10^{-4} \, \text{U.A.}^{-1} deveria ser maior do que o observado. Em resposta, Oort e Schmidt (1951) sugeriram que muitos cometas poderiam não ser facilmente descobertos em suas primeiras passagens pelo Sistema Solar interior devido às suas grandes distâncias de periélio e consequentemente baixo brilho. Esse trabalho originou o conceito de cometas novos (brilhantes devido à grande produção de poeira e gás e originários da Nuvem de Oort) e cometas velhos (pouco brilhantes devido à baixa produção de poeira e gás e com órbitas elípticas com períodos orbitais curtos).

Imagem CCD do centauro (2060) Chiron (círculo verde) obtida em 05/05/1999 no Observatório do Pico-dos-Dias (Brasópolis, Minas Gerais). Este objeto, que orbita entre Saturno e Urano, foi provavelmente um membro do cinturão de Edgeworth-Kuiper, colocado nesta órbita mais próxima do Sol devido a perturbações gravitacionais de Netuno ou Urano.

 


Referências

Betzler, A. S.: 1998, in Um estudo dos cometas Hale-Bopp e Chiron, Projeto de Final de Curso para a Obtenção do Título de Astrônomo, UFRJ-CCMN/Departamento de Astronomia, Rio de Janeiro, p. 18, 30

Edgeworth, K.E.: 1949, MNRAS 109, 600.

Fenandez, J.: 1980, MNRAS 192, 481

Jewitt, D. & Luu, J.: 1993, Nature 362, 730

Kuiper, G.P.: 1951, in Astrophisics: A Topical Symposium, J.A . Hynek ed. McGraw Hill, N.Y., 357

Oort, J.H.: 1950, Bull. Astron. Inst. Netherl. 11, 91

Oort, J.H. & Schmidt, M.: 1951, Bull. Astron. Inst. Netherl. 11, 259

Öpik, E.J.: 1932, Proc. Amer. Acad. Astr. Sci. 67, 199
Sagan, C & Druyan, A. : 1985, in Cometa, Livraria Francisco Alves Editora S.A.,p.300-301

Strömgrem, E.: 1914, Publ. Obs. Compenhagen 19,

Strömgrem, E.: 1947, Publ. Obs. Compenhagen 144,

Van Woerkom, A . J. J.: 1948, Bull. Astron. Inst. Netherl. 10, 445

quarta-feira, 15 de fevereiro de 2023

252P/LINEAR

Registro do cometa LINEAR obtido no loteamento Santo Antônio, em Amargosa (BA). As imagens foram capturadas com uma câmera Nikon D80 em 22-03-2016, entre 06h47min e 07h07min UT. A figura (b) é o resultado da soma de nove fotografias, cada uma com 15 segundos de exposição, ISO 1600, obturador f/5,3 e objetiva de 40 mm. As fotografias foram alinhadas e somadas com o software Sequator.

A magnitude do cometa devia ser próxima de cinco na ocasião do registro, segundo observadores da REA-Brasil.

O núcleo deste cometa deve ter um raio de 0,33 km, assumindo que não seja hiperativo. Este foi o menor objeto do sistema solar que consegui registrar até o momento usando uma simples máquina fotográfica.



(a) - Identificação das constelações presentes na imagem (b)
pelo Astrometry.com.


(b) - Um zoom de 250 x do Google Chrome facilita a
 visualização do objeto (seta).


segunda-feira, 6 de fevereiro de 2023

C/2022 E3 (ZTF)

Registro do cometa ZTF realizado no bairro Santo Antônio (indicado pela seta), no centro histórico de Salvador. As imagens foram capturadas com uma câmera Canon Rebel T100 no dia 05/02/2023, entre 22h29min e 22h33min UT. A figura (a) resulta da soma de 10 fotografias, cada uma com 15 segundos de exposição, ISO 800, obturador f/3.5 e lente grande angular (18 mm). As imagens foram alinhadas, somadas e corrigidas para poluição luminosa utilizando o software Sequator.

De acordo com o COBS, a magnitude visual total do cometa devia ser em torno de 5,9, o que está próximo do limite de detecção da minha câmera, dado o ambiente urbano.

O núcleo deste cometa deve ter um raio mínimo estimado em 2,3 km, assumindo que ele não seja hiperativo.


(a) Um zoom de 250 x do Google Chrome facilita a visualização
do objeto (seta).



 (b) Identificação das constelações presentes na imagem (a)
pelo Astrometry.com.


domingo, 5 de fevereiro de 2023

A Composição Química do Cometa 96P/Machholz: Devemos Confiar em Tudo o Que Lemos na Internet?


Diversos canais de divulgação científica na internet apresentaram duas hipóteses para explicar por que o cometa Machholz 1 exibe abundâncias de cianogênio e carbono inferiores às observadas em uma amostra homogênea, criada e atualizada há décadas por pesquisadores do Lowell Observatory (EUA). A primeira hipótese propõe que o cometa tenha se formado em uma região distinta do Sistema Solar, diferente daquela onde se originou a maioria dos cometas da amostra. Essa possibilidade deve ser analisada com cautela, pois há sempre o risco de viés observacional. Tal viés pode estar relacionado à seleção dos objetos estudados, já que astrônomos tendem a observar cometas mais brilhantes, o que favorece a obtenção de dados de melhor qualidade.

A segunda hipótese sugere que o cometa Machholz 1 seja de origem interestelar, ou seja, que tenha se formado fora do Sistema Solar. Embora essa ideia seja instigante, ela permanece altamente especulativa, pois é extremamente difícil determinar a origem interestelar de um cometa periódico apenas com base em sua órbita atual. Além disso, os sistemas exoplanetários provavelmente se formam de maneira semelhante ao nosso, compostos pelos mesmos elementos, ainda que em proporções levemente distintas. Diferenças significativas, como as sugeridas por hipóteses que associam a formação de planetas gigantes a estrelas com alta metalicidade, são exceções e não justificam conclusões precipitadas.

É fundamental manter uma postura crítica diante do que é veiculado na internet. Jornalistas não são cientistas e não têm a obrigação de ser. Além disso, declarações de astrônomos podem, por vezes, ser interpretadas fora de contexto.



Periélio do cometa Machholz 1 registrado através da câmera C3
do satélite SOHO da NASA/ESA.

quarta-feira, 21 de dezembro de 2022

Asteroides e montes de pedras

A estrutura de muitos pequenos asteroides, com menos de 10 km de diâmetro, pode ser do tipo rubble pile, ou seja, um conglomerado de fragmentos rochosos mantidos coesos apenas pela gravidade. Essa hipótese foi proposta na década de 1990 para explicar a escassez de asteroides com períodos de rotação inferiores ao limite conhecido como spin barrier, que é de aproximadamente 2,2 horas. Abaixo, algumas imagens ilustram esse conceito:


Monte de brita no canteiro da Av. Juracy Magalhães Jr.Imagem obtida
em 20-12-2022, que inspirou esta postagem
.
Rotação do asteroide Itokawa. Fonte: JAXA

Rotação do asteroide Ryugu. Fonte: JAXA

      Rotação do asteroide Bennu. Fonte: NASA.

Minha Vivência com o Colonialismo Cultural na Ciência

  Esta postagem tem um caráter de reflexão e registro para futuras gerações de cientistas brasileiros. Em 15 de dezembro de 2022, enviei uma...