Imagem da conjunção Lua–Júpiter de 03/01/2026, registrada às 22:07 UT, no bairro do Barbalho, em Salvador (BA), com a câmera de um iPhone 13 Pro.
![]() |
| Imagem original. |
![]() |
| Zoom da imagem anterior. |
Exoplanetas são planetas que orbitam estrelas (ou remanescentes estelares) fora do Sistema Solar. Em 20/04/2001, data em que uma primeira versão deste texto foi publicada, a Extrasolar Planets Encyclopaedia listava cerca de 60 estrelas com indícios de companheiros planetários. Hoje, os catálogos modernos reúnem milhares de detecções confirmadas: o NASA Exoplanet Archive indicava 6.065 planetas confirmados em 18/12/2025, enquanto o Exoplanet.eu listava 7.915 objetos em seu catálogo (o total varia conforme os critérios e categorias adotados). Esse crescimento evidencia a evolução do campo de pesquisa em planetas extrasolares.
Planetas, superplanetas e anãs marrons. Em termos práticos, frequentemente aparece o valor de ~13 massas de Júpiter como uma “fronteira” associada à queima (parcial) de deutério. Porém, isso é uma regra de bolso: a fração de deutério queimado e o limite efetivo dependem das condições e da composição do objeto, e não representam uma divisão física rígida.
A astrometria mede o “balanço” (wobble) da estrela no céu devido à presença de companheiros. Historicamente, missões como o Hipparcos alcançaram precisão típica na faixa de milissegundos de arco (mas), e a missão Gaia elevou essa capacidade para a escala de microsegundos de arco (µas) em estrelas brilhantes, tornando a técnica muito mais potente para detectar companheiros por movimento próprio e paralaxe com alta precisão.
Mede a variação periódica na velocidade da estrela ao longo da linha de visada (efeito Doppler) causada pela interação gravitacional com o(s) planeta(s). O método fornece, em geral, uma estimativa do tipo M sin i (massa mínima), pois depende da inclinação orbital.
Detecta a queda de brilho quando o planeta passa em frente ao disco da estrela. O trânsito fornece o raio (via profundidade do evento), e, quando combinado com velocidade radial, permite estimar densidade e composição média. Um caso clássico é HD 209458 b, e missões como Kepler/TESS popularizaram esse tipo de detecção em larga escala.
Usa o efeito de lente gravitacional quando uma estrela (com possível planeta) passa diante de outra mais distante. É útil para detectar planetas em distâncias maiores da estrela hospedeira e até em regiões mais externas da Galáxia.
Registra diretamente a luz do planeta, geralmente no infravermelho, com óptica adaptativa/coronógrafos. É mais eficiente para planetas jovens, quentes e afastados da estrela.
Em pulsares, pequenas variações nos tempos de chegada dos pulsos podem revelar a presença de companheiros. Foi assim que surgiram alguns dos primeiros indícios de planetas fora do Sistema Solar.
Um exemplo emblemático é PSR B1620-26 b (também citado como “Methuselah” em materiais de divulgação), um gigante gasoso em órbita circumbinária ao redor de um pulsar e de uma anã branca. No catálogo da NASA, ele aparece com massa da ordem de ~2,5 MJ, semi-eixo maior ~23 UA e período orbital ~95 anos, com anúncio de descoberta em 2003.
Não temos evidência de vida em exoplanetas. Quando se discute a possibilidade de vida, trata-se de hipóteses dependentes de fatores como: tipo de estrela, radiação incidente, presença/estabilidade de atmosfera, água líquida e proteção contra partículas energéticas. Em planetas gasosos, por exemplo, uma ideia especulativa é a existência de vida em camadas atmosféricas com temperatura e pressão adequadas; já em sistemas de pulsares, a radiação e o ambiente extremo tornam os cenários ainda mais desafiadores.
![]() |
Astrofotografias feitas com um iPhone X em 8 de agosto de 2025, no campus da UFBA (Salvador), na área do Planetário. Os horários (UT) constam nas legendas. Sírius pode ser usado como referência para estimar a ordem de brilho aparente da ISS, de Vênus e de Júpiter.
Ciência e Misticismo
A crença na existência de um corpo celeste denominado Hercóbulus (ou Hercólubus) é comum em certos meios esotéricos e pseudocientíficos. Contudo, não há qualquer evidência astronômica que comprove sua existência ou aproximação da Terra.
Em 1984, astrônomos dos Estados Unidos propuseram uma hipótese para explicar extinções em massa aparentemente periódicas nos registros fósseis, com ciclos de cerca de 26 a 30 milhões de anos. A explicação envolvia a existência de uma estrela anã vermelha ou marrom, denominada Nêmesis, orbitando o Sol em uma órbita altamente excêntrica, com semieixo maior de aproximadamente 90.000 unidades astronômicas (U.A., 1,4 anos-luz). Ao atingir o periélio, essa estrela atravessaria a Nuvem de Oort, perturbando gravitacionalmente cometas e lançando alguns para o interior do Sistema Solar, aumentando a chance de colisões com a Terra.
Essa hipótese jamais foi confirmada. O satélite IRAS fez uma varredura do céu em infravermelho, onde um objeto frio como Nêmesis seria mais facilmente detectável, mas não encontrou candidatos compatíveis. Ainda assim, a ideia foi distorcida por autores esotéricos, que transformaram a estrela em um planeta ou cometa ameaçador e sugeriram que sua existência é ocultada por astrônomos.
Um exemplo real de anã vermelha próxima é DENIS-P J104814.7−395606.1, descoberta na pesquisa infravermelha DENIS, no Chile. Com mais de 60 massas de Júpiter, ela está a 13 anos-luz da Terra. Sua detecção reforça que, se existisse um corpo como Nêmesis a 1,4 anos-luz, ele já teria sido facilmente identificado. Portanto, a ausência de tal detecção é uma forte evidência contra sua existência.
Não há registros na literatura científica que sustentem a existência do chamado Hercóbulus. A hipótese carece de fundamentos observacionais e viola princípios fundamentais da astrofísica, como detecção por paralaxe, brilho aparente e coerência orbital. Trata-se de um conceito místico, e não científico.
Nota: O catálogo Gaia fornece dados precisos sobre bilhões de estrelas, permitindo excluir a presença de objetos massivos não detectados até centenas de U.A., com base em suas perturbações no movimento estelar.
Nuvem de Oort e o Cinturão de Kuiper
|
Nuvem de Oort-Öpik e órbitas elípticas, parabólicas e hiperbólicas de alguns hipotéticos cometas. Fonte: Bergamini, D.:1970 In, O Universo, Biblioteca da Natureza Life, Livraria José Olympio Editora, Rio de Janeiro, P.69 |
Durante as primeiras décadas do século XX, diversos pesquisadores investigaram as perturbações gravitacionais planetárias sobre as órbitas de corpos do Sistema Solar, como asteroides e cometas. Esses estudos levaram ao desenvolvimento das primeiras ideias sobre a distribuição estatística dos parâmetros orbitais desses corpos.
Strömgrem (1914, 1947) demonstrou que as órbitas hiperbólicas dos cometas (1/
Sinding (1948) determinou valores de para vinte e um cometas de longo período. Esses resultados, juntamente com o trabalho de Van Woerkom (1948), formaram a base para o trabalho de Oort (1950) sobre a existência de um reservatório de cometas além dos limites do Sistema Solar. A teoria de uma hipotética nuvem de cometas distantes, com trajetórias estáveis frente a perturbações estelares, foi formulada por Öpik em 1932, antes de Oort.
Oort deduziu a existência desta nuvem com base no grande número de cometas de longo período com dentro de uma amostra de dezenove cometas. Seus afélios estariam a pelo menos 200.000 U.A. do Sol. Oort concluiu que haveriam órbitas estáveis a aproximadamente 200.000 U.A., as quais poderiam ser perturbadas por passagens estelares próximas. Admitindo que as passagens estelares poderiam tornar randômica a distribuição orbital da nuvem e considerando a idade do sistema solar, a nuvem poderia conter cerca de cometas. Com uma massa cometária média da ordem de , a massa total da nuvem seria de aproximadamente 0,3 massas terrestres ou .
De acordo com a teoria da difusão orbital de Van Woerkom (1948) para as perturbações planetárias, o número de cometas com deveria ser maior do que o observado. Em resposta, Oort e Schmidt (1951) sugeriram que muitos cometas poderiam não ser facilmente descobertos em suas primeiras passagens pelo Sistema Solar interior devido às suas grandes distâncias de periélio e consequentemente baixo brilho. Esse trabalho originou o conceito de cometas novos (brilhantes devido à grande produção de poeira e gás e originários da Nuvem de Oort) e cometas velhos (pouco brilhantes devido à baixa produção de poeira e gás e com órbitas elípticas com períodos orbitais curtos).
|
| Imagem CCD do centauro (2060) Chiron (círculo verde) obtida em 05/05/1999 no Observatório do Pico-dos-Dias (Brasópolis, Minas Gerais). Este objeto, que orbita entre Saturno e Urano, foi provavelmente um membro do cinturão de Edgeworth-Kuiper, colocado nesta órbita mais próxima do Sol devido a perturbações gravitacionais de Netuno ou Urano. |
Imagens da conjunção Júpiter-Vênus obtidas em Salvador (BA):
a) J. Vinny Almeida às 04:13 (UT-3 h) de 01-05-2022 usando um zoom de 50 vezes, com a câmera de um celular Xiaomi Mi Note 10.
b) Autor desse blog às 05:14 (UT-3 h) de 02-05-2022 usando a câmera de um celular Iphone XR, f/1.8, tempo de exposição 1/30 s, e ISO 640.
![]() |
| (a) |
![]() |
| (b) Seta. Um zoom de 400 x do Google Chrome permite uma melhor visualização do evento. |
Imagem do cometa Leonard obtida com uma câmera Canon Rebel T100 em 18 de dezembro de 2020 (UT), na Ponta de Humaitá, em Salvador, Bahia. O objeto não era visível a olho nu devido à intensa poluição luminosa no local de observação.
Ao aplicar um zoom de 400% no Google Chrome sobre a imagem, é possível visualizar o aspecto nebular do objeto.
Estima-se que o núcleo desse cometa possua um raio mínimo de 2 km, assumindo que ele não seja hiperativo.
| Cometa (seta) - 22h 09m UT - 10 s de exposição, grande angular de 29 mm, obturador f/4.5 e ISO 800. O objeto brilhante é o planeta Vênus. |
| Autor do blog durante a obtenção das imagens. |
| Ascenção da Lua com 98,9% de sua superfície iluminada. A edificação é a Igreja e Mosteiro de Nossa Senhora do Monte Serrat. |
Em ordem de cima para baixo na imagem temos Júpiter, Saturno, Lua e Vênus em conjunção, visíveis no bairro do Santo Antônio de Salvador (BA). Os objetos foram registrados às 21:46 de 07-12-2021 UT, com a câmera digital de um Iphone XR.
A estrela Antares, alfa da constelação da Escorpião, o planeta Vênus e a Lua em conjunção visíveis no bairro do Santo Antônio, em Salvador (BA). Os objetos foram registrados às 21:07 de 09-10-2021 UT, com a câmera digital de um Iphone XR.
Passagem da Estação Espacial Internacional (ISS) próxima ao planeta Marte, registrada a partir do bairro do Santo Antônio, no centro histórico de Salvador. A imagem foi captada em 13 de dezembro de 2020, às 21h37 UT, com uma câmera Canon Rebel T100. Os parâmetros de captura foram: tempo de exposição de 8 segundos, ISO 400, abertura f/5.6 e distância focal de 55 mm.
Conjunção Marte-Lua registrada atráves da câmera de um celular Sansung. Imagem obtida em 02-10-2020, às 22:55 UT, em Salvador (Bahia), por meu vizinho Hamilton Vaqueiro.
![]() |
| Praticamente sem sombras às 14:23 UT |
![]() |
| 14:27 UT |
![]() |
| Campo de visão da imagem sobre uma parte da esfera celeste. |
Esta postagem tem um caráter de reflexão e registro para futuras gerações de cientistas brasileiros. Em 15 de dezembro de 2022, enviei uma...